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A new and very general technique for simulating solid-fluid suspensions is described ; 
its most important feature is that the computational cost scales linearly with the 
number of particles. The method combines Newtonian dynamics of the solid particles 
with a discretized Boltzmann equation for the fluid phase; the many-body 
hydrodynamic interactions are fully accounted for, both in the creeping-flow regime 
and at higher Reynolds numbers. Brownian motion of the solid particles arises 
spontaneously from stochastic fluctuations in the fluid stress tensor, rather than from 
random forces or displacements applied directly to the particles. In this paper, the 
theoretical foundations of the technique are laid out, illustrated by simple analytical 
and numerical examples; in a companion paper (Part 2), extensive numerical tests of 
the method, for stationary flows, time-dependent flows, and finite-Reynolds-number 
flows, are reported. 

1. Introduction 
Numerical simulations, which take explicit account of the hydrodynamic forces 

between the suspended particles, are becoming useful tools for studying the dynamical 
and rheological properties of suspensions. There are at least three important flow 
regimes which can be addressed by numerical simulation: colloidal suspensions of sub- 
micron-sized particles, where Brownian forces and viscous forces balance; suspensions 
of macroscopic particles (i.e. larger than 10 pm), where the viscous forces alone are 
important; and flows at small but non-zero Reynolds number (1 < Re < 100). At 
present, computational cost is the limiting factor; even with supercomputers, it is not 
feasible to simulate more than about 100 particles with current methods. Thus, 
development of reliable and more efficient simulation techniques, able to cope with 
thousands of suspended particles, would have a significant impact on our under- 
standing of particulate suspensions, complementing present experimental and 
theoretical knowledge. In this paper and a companion paper (Part 2, Ladd 1994) a new 
simulation technique for particulate suspensions is described ; it combines Newtonian 
dynamics of the solid particles with a discretized Boltzmann model (McNamara & 
Zanetti 1988; Higuera, Succi & Benzi 1989) for the fluid. The basic idea is illustrated 
in figure 1, which shows five solid particles suspended in a background fluid. The fluid 
can be modelled as a continuum (figure 1 a), as a molecular liquid (figure 1 b), or as a 
discrete-velocity (lattice) gas (figure 1 c). Because of the large scale separations, the 
dynamics of the solid particles are largely independent of the detailed mechanics of the 
suspending fluid. Discrete-velocity models of the fluid combine most of the features of 
a fully molecular simulation of solid and liquid phases, but are orders of magnitude 
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FIGURE 1. Microscopic models of a colloidal suspension. The dynamical properties of the large 
particles are insensitive to the detailed motions of the background fluid, so that the continuum fluid 
in (a) can be equally well replaced by either a molecular solvent (b) or a lattice gas (c). Lattice- 
gas/lattice-Boltzmann simulations are many orders of magnitude faster computationally. 

faster computationally. They have many advantages over conventional methods of 
simulating particulate suspensions, which are usually based on complicated, 
computationally intensive solutions of the Stokes equations. By contrast, lattice- 
gasllattice-Boltzmann simulations are fast, flexible, and simple. The new method is 
closely related to earlier suspension modelling using lattice-gas cellular automata 
(Ladd, Colvin & Frenkell988; Ladd & Frenkel1989,1990; Ladd, 1991 ; van der Hoef, 
Frenkel & Ladd 1991), but the large and uncontrollable statistical fluctuations present 
in lattice-gas models are suppressed, reducing the need for computationally expensive 
ensemble averaging. 

In the classical theory of suspensions (Happel & Brenner 1986), the hydrodynamic 
interactions are assumed to be fully developed; in other words, there is a complete 
separation of timescales between the dynamics of the fluid and the motion of the solid 
particles. Most simulation methods (for instance Ermak & McCammon 1978 ; Brady 
& Bossis 1988; Ladd 1988; Tran-Cong & Phan-Thien 1989; Karrila, Fuentes & Kim 
1989) utilize this approximation, even though it imposes a crippling numerical burden, 
associated with the global nature of the interactions; in such cases one must either 
make drastic simplifications (as in Ermak & McCammon 1978), or pay the steep 
computational cost of an algorithm that scales as at least the square and often as the 
cube of the number of particles (Brady & Bossis 1988; Ladd 1988; Tran-Cong & 
Phan-Thien 1989; Karrila et al. 1989). 

The exact scaling depends on the problem to be solved. In some instances, particle 
velocities are computed for a given set of forces, in which case the computation can 
scale as N 2 .  However in many cases, for instance to simulate Brownian motion (Bossis 
& Brady 1987), the full 6Nx 6N diffusion coefficient matrix is needed; here the 
computational cost is of order N 3 .  Moreover, determining lubrication forces 
(Durlofsky, Brady & Bossis 1987) also involves an order-N3 calculation of the friction 
coefficient matrix. 
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The Stokes equations can be solved very efficiently by spectral methods (Fogelson 
& Peskin 1988; Sulsky & Brackbill 1991). However, there are then the usual difficulties 
associated with incorporating solid boundary conditions into spectral codes; in the 
referenced work the particle surfaces are represented by point forces. Numerical studies 
of the Navier-Stokes equations indicate that, even for pure fluid flows, the lattice- 
Boltzmann equation is quite competitive with the best spectral methods (Chen et al. 
1992). 

In reality, hydrodynamic interactions develop in time and space from purely local 
forces generated at the solid-fluid surfaces, which then diffuse throughout the fluid. 
The Reynolds number introduces an effective range for the hydrodynamic interactions, 
proportional to R;;. By contrast, truncating the creeping-flow hydrodynamic 
interactions beyond some critical distance is unlikely to be feasible; in analogous 
simulations of charged particles, spherical truncation of the Coulomb interaction 
between ions leads to large errors (Allen & Tildesley 1987). Recently a new simulation 
technique for particulate suspensions has been developed (Ladd 1993) which exploits 
the spatial locality of time-dependent hydrodynamic interactions ; as a result the 
computational cost scales linearly with the number of particles. The method is also very 
flexible; the particle size and shape, the electrostatic interactions, the flow geometry, 
the PCclet number (the ratio of viscous forces to Brownian forces), and the Reynolds 
number (the ratio of inertial forces to viscous forces), can all be varied independently. 

The popularity of boundary-integral methods, despite their obvious computational 
drawbacks, is a reflection of the difficulties involved in solving the Navier-Stokes 
equations in complex geometries. The drawbacks of an elementary finite-difference 
method, using a regular mesh, are discussed in 93.5 of Part 2. More complex finite- 
difference and finite-element techniques must deal with the challenge of finding a 
suitable computational mesh on which to calculate the fluid flow. In these two papers 
it will be shown that an algorithm based on a discretized Boltzmann equation can 
successfully solve complex fluid flow problems using only a simple cubic array of nodes. 

Our computational method is based on the well-established connection between the 
dynamics of a dilute gas and the Navier-Stokes equations (Chapman & Cowling 1960). 
Thus, the problem is to determine the time evolution of the one-particle velocity 
distribution function n(r, u, t), which defines the density of particles with velocity u 
around the space-time point (r ,  t). By introducing the assumption of molecular chaos, 
i.e. that successive binary collisions in a dilute gas are uncorrelated, Boltzmann was 
able to derive the integro-differential equation for n named after him (see Chapman & 
Cowling 1960) : 

The Boltzmann equation has the form of a continuity equation for the velocity 
distribution function, with the addition of sources and sinks due to intermolecular 
collisions. The hydrodynamic fields, mass density p and momentum density j = pu, 
together with the momentum flux n, can be described by appropriate moments of n: 

I mn(r, u, t )  do, s 
l (mu)  n(r, v ,  t )  dv, 

(muu) n(r, u ,  t )  du, 
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where m is the molecular mass. In what follows, only the transport of mass and 
momentum will be considered; similar results can be derived for energy transport 
although the analysis is considerably more involved. (Ignoring energy conservation 
leads to the isothermal expression for the sound speed c, = (k ,  T/m)i, rather than the 
adiabatic result c, = (5k, T/3m)i. This is of no consequence to the later parts of this 
paper where the sound speed is treated as a variable parameter.) 

Since intermolecular collisions are relatively rare in a dilute gas, the collisional 
contributions to the fluxes can be ignored ; thus taking moments of (1.1) we find the 
expected conservation equations for mass and momentum, 

a t p + v = j  = 0, a,j+v.n = 0. (1.3) 
The right-hand sides of (1.3) vanish because mass and momentum are conserved in the 
collision process, but finding a soluble equation for the momentum flux requires a more 
detailed consideration of the collision operator. 

The difficulties associated with solving the Boltzmann equation arise from the 
complexity of the collision operator, written simply as (dn/dt),,,, in (1.1). The earlier 
kinetic theory of Maxwell leads to a simplified form for the collision operator 

where the relaxation time r is an empirical parameter (which can be explicitly related 
to the rather unusual case of an yP5 intermolecular force law), and neq is the equilibrium 
Maxwell-Boltzmann distribution. Maxwell was able to show that the distribution 

is a collisional invariant, i.e. (dnep/dt)colz = 0. Thus, if the system should once reach 
such a uniform state, it would remain there indefinitely. Boltzmann’s H-theorem 
showed that any initial distribution proceeds monotonically to neq, thus establishing it 
as the true equilibrium distribution for an ideal gas. 

The Maxwell form for the collision operator is inadequate in some respects; it 
predicts a fixed ratio between the viscosity and thermal conductivity, and a vanishing 
coefficient of thermal diffusion. Boltzmann showed that these discrepancies could be 
removed by a detailed consideration of the effects of intermolecular forces on the 
collision process. Nevertheless, (1.4) is sufficient to give a simple and more-or-less 
correct understanding of the connection between the Boltzmann kinetic equation and 
Navier-Stokes fluid dynamics. The distribution function is written as a sum of 
equilibrium and non-equilibrium terms 

n = neq + nneq, 

where the non-equilibrium distribution, nneq, has the important property that its zeroth 
and first velocity moments vanish (cf. (1.2)), along with the trace of the second moment 
J(mu2) nneq(r, u, t )  dv. The momentum flux can be similarly decomposed; its equilibrium 
contribution can be evaluated directly from (1 S), 

(1 4 

and is equivalent to the Eulerian form for the momentum flux, with an ideal-gas 
equation of statep = pk, T/m. The non-equilibrium momentum flux nneQ (the overbar 
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indicates the traceless projection) can be obtained from a kinetic equation for ll 
analogous to (1.3), 

8, ITe4 + (mfiu) - Vneq(r, u, t )  dv = ( - T-') ITnep. (1.8) 

In deriving (1.8) it has been assumed that the system is close to equilibrium, so that n 
can be replaced by neq, and that the hydrodynamic timescales are large compared with 
T .  The left-hand side of (1 .8) can be evaluated explicitly, using (1.5) and (1.7); the result 
is 

s 

which is the Navier-Stokes form for the viscous momentum flux with viscosity 
7 = pk, TT/m. 

In the preceding discussion it was shown, in a rather approximate fashion, that the 
Navier-Stokes equations follow directly from the Boltzmann equation in the limit that 
the dimensions of the macroscopic flow fields are much larger than the mean free path 
between molecular collisions; a rigorous derivation of this result can be found in 
Chapman & Cowling (1960). Because of its complexity, there are few direct numerical 
solutions of the Boltzmann equation (an exception is Yen 1984), but stochastic, 
particle-based simulations are quite commonly used in molecular gasdynamics ; the 
merits of this approach are discussed in Bird (1976, 1990). A variant of this approach 
has recently been introduced to simulate particle suspensions (Hoogerbrugge & 
Koelman 1992; Koelman & Hoogerbrugge 1993). However, a key realization is that 
the one-particle distribution function n(r, u, t )  contains much more information than is 
strictly necessary to solve fluid-dynamics problems. Hence in recent years, there has 
been a resurgence of interest in discrete-velocity or lattice-gas models (Frisch, 
Hasslacher & Pomeau 1986; Frisch et al. 1987), in which the continuous distribution 
of molecular velocities is replaced by a few discrete values, carefully chosen to ensure 
that the moment equations (1.3), (1.7), and (1.9) are reproduced correctly. Numerical 
studies have shown that lattice-Boltzmann simulations are comparable in accuracy and 
computational cost to state-of-the-art Navier-Stokes solvers, either finite difference 
(McNamara & Alder 1993) or spectral (Chen et al. 1992). 

In the lattice-Boltzmann approximation, the fundamental quantity is the discretized 
one-particle velocity distribution function ni(r, t ) ,  which describes the number of 
particles at a particular node of the lattice r,  at a time t ,  with a velocity c i ;  Y, t ,  and ci 
are discrete, whereas n, is continuous. As before, the hydrodynamic fields, p, j ,  and II, 
are moments of this discrete velocity distribution (cf. (1.2)) : 

p = E n i ,  j =  Cnic i ,  fI = C n i c i c i .  
i i i 

(1.10) 

The lattice-Boltzmann equation has two important properties which are valuable for 
simulations of particulate suspensions. First, the connection to molecular mechanics 
makes it possible to derive simple local rules for the interactions between the fluid and 
the suspended solid particles (Ladd 1993); this was demonstrated in our earlier lattice- 
gas simulations (Ladd & Frenkel 1990; Ladd 1991 ; van der Hoef et al. 1991). Second, 
the discrete one-particle distribution function ni contains additional information about 
the dynamics of the fluid beyond that contained in the Navier-Stokes equations; in 
particular, the fluid stress tensor, although dynamically coupled to the velocity 
gradient (Frisch et al. 1987), has an independent significance at short times. This 
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additional flexibility allows us to simulate molecular fluctuations, leading to Brownian 
motion of the suspended particles. To do this, a random fluctuation, uncorrelated in 
space and time, is added to the fluid stress tensor (Ladd 1993); the variance of the 
fluctuations defines the effective temperature of the fluctuating fluid (Landau & Lifshitz 
1959). This approach is quite different from Brownian dynamics (Ermak & 
McCammon 1978) or Stokesian dynamics (Bossis & Brady 1987), where random 
fluctuations are applied directly to the particles ; to include hydrodynamic interactions 
in these methods requires sampling from the 6Nx 6N diffusion matrix, which is 
extremely time consuming. 

The layout of the remainder of this paper is as follows. In $2 the lattice-Boltzmann 
model is described and its connection to Navier-Stokes fluid dynamics established. 
Section 3 describes the implementation of the solid-fluid boundary conditions at the 
microscopic level, together with analytic and numerical results for shear flows and 
channel flows. Fluctuations are introduced in 94; it is verified that the simulations 
satisfy the fluctuation-dissipation theorem and that the correct shear viscosity can be 
obtained from an appropriate Green-Kubo formula. In the companion paper (Ladd 
1994, referred to hereafter as Part 2), results of extensive tests of creeping-flow 
hydrodynamics are reported, for both periodic arrays and random distributions of 
spheres; time-dependent and finite-Reynolds-number flows are also discussed. Three- 
dimensional simulations of up to 1024 colloidal particles, moving under the action of 
Brownian forces, are also reported. 

2. Discrete Boltzmann approximation 
The computational utility of the lattice-Boltzmann equation is related to the 

realization that only a small set of discrete velocities is necessary to simulate the 
Navier-Stokes equations (Frisch et al. 1986). It may be helpful in what follows to 
imagine an underlying mechanical model in which identical particles move with 
discrete velocities from node to node of a regular lattice; much of the kinetic theory of 
dilute gases, outlined in $ 1, can then be carried over directly to the discretized version. 
The specific model used in this work has 18 different velocities corresponding to the 
near-neighbour and second-neighbour directions of a simple cubic lattice. Thus there 
are six velocities of speed 1, corresponding to (100) directions in the lattice, and 12 
velocities of speed 4 2 ,  corresponding to the (110) directions, for a total of 18. All 
quantities in this paper are expressed in ‘lattice units’, for which the distance between 
nearest-neighbour nodes and the time for the particles to travel from node to node are 
both unity. Note that the velocities are such that all particles move from node to node 
simultaneously. 

The time evolution of the distribution functions ni is described by a discrete analogue 
of the Boltzmann equation (Frisch et al. 1987), 

ni(r + ci,  t + 1) = ni(r, t )  + A i ( y ,  t) ,  (2.1) 
where Ai is the change in ni due to instantaneous molecular collisions at the lattice 
nodes. The post-collision distribution ni + A i  is propagated for one time step, in the 
direction ci. The collision operator A(n) depends on all the ni at the node, denoted 
collectively by n ( r ; t ) ;  it can take any form, subject to the constraints of mass and 
momentum conservation. An exact expression for the Boltzmann collision operator 
has been derived for several different lattice-gas models (Frisch et al. 1987; McNamara 
& Zanetti 1988), under the usual assumption that the distribution functions n(r; t )  are 
uncorrelated from those at previous times. However, such collision operators are 
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complex and ill-suited to numerical simulation. A computationally useful form for the 
collision operator, similar to (1.4), can be constructed by linearizing the collision 
operator about the local equilibrium neq (Higuera et al. 1989), i.e. 

Ai(n) = Ai(ne*) + C 9 i j ( n j  - njep), (2.2) 
i 

where 9 is the linearized collision operator, and Ai(ne*) = 0 by definition. It is not 
necessary to construct a particular collision operator and from this calculate 9; rather 
it is sufficient to consider the general principles of conservation and symmetry and then 
to construct the eigenvalues and eigenvectors of 9. However, before doing this, the 
proper form for the equilibrium distribution function will be determined. 

To establish the connection between molecular mechanics and fluid dynamics, it is 
again necessary to split the distribution function into an equilibrium part and a non- 

The equilibrium distribution is a collisional invariant (i.e. Ai(neq) = 0), and depends 
only on the local hydrodynamic variables (mass density, stream velocity and, in some 
cases, energy density); for a molecular gas neq is the Maxwell-Boltzmann distribution, 
(1.5). It is well known that a Maxwell-Boltzmann local equilibrium leads to the Euler 
equations of hydrodynamics (( 1.3) and (1.7)); however the most-probable (equilibrium) 
distribution functions of discrete-velocity lattice gases give rise to density-dependent 
advection velocities and velocity-dependent pressures (Frisch et al. 1987). Therefore we 
seek a constrained equilibrium distribution for our discrete-velocity model that will 
lead to the correct macroscopic fluid dynamics at the Euler level; the required form for 
the moments of the velocity distribution function are 

equilibrium part n, = $4 + n:eq. (2.3) 

p = C niq, j = C n:qci, neq = 2n:qcaci = p l  +puu, (2.4) 
i a i 

where p is the pressure and IIe* is the non-dissipative part of the momentum flux. As 
in the usual kinetic theory of gases, the viscous fluxes come from the non-equilibrium 
part of the distribution function. 

The equilibrium distribution can be expressed as a series expansion in powers of the 
flow velocity u, 

where im = uu-iu21 is the traceless part of uu; (2.5) has the same functional form as 
a small-u expansion of the Maxwell-Boltzmann distribution function. The moments of 
the distribution function, (2.4), can be expressed in terms of the coefficients a2, which 
are functions only of the speed, c i :  

ni* = p[a? +a? u.ci + a? m:qq + a2 u2], (2.5) 

p-l C nf* = 6ai + 12~;" + [ 6 4  + 12af2] u2, 
i 
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P-’ Z n? cia cip c i y  = (20: Sapy$ + 4af2[ - aapys + Sap Sy8 + Say 81, + a,, 8pJ> ug. (2.10) 
i 

The tensor SaPy8 is unity when all the subscripts are the same (i.e. S,,,, = S,,,, - - S,,,, = 1) 
and zero otherwise; aal is the Kronecker delta. The third-order moments, (2.10), do 
not contribute to the Euler equations, but they do contribute to the viscous stresses 
because of the second-order Chapman-Enskog expansion (see (2.28)). Thus they must 
be proportional to the fourth-rank identity tensor (aKp Sy8 + Say Sp8+ S,, Sar) ; otherwise 
the viscous part of the momentum flux will not be isotropic. A comparison of 
(2.6)-(2.9) with (2.4), together with the isotropy condition in (2.10), is sufficient to 
determine all the coefficients: 

’ 6, 0; = i, a1 = -1 a, - 3(2- 3 4 ,  a1 = I 3 

af2 = 33c9- I), .:‘z = 1 123 ($2 = +, 
= 1 (2.11) 
6’ 12’ 1 1 - 1  

The definition of the pressure (2.4) indicates that it is proportional to the density, i.e. 
p = $(Cinrc ; -pu2)  = pci ;  later it will be shown that c, is the speed of sound (see 
(2.26)), as in a normal gas. Since the distribution function must always be positive, the 
speed of sound is bounded by the limits $ < c,” < $. However, as the sound speed 
approaches either of the two limits, the simulation becomes unstable with respect to 
variations in fluid velocity. In our simulations, the intermediate value c,” = $ is used, to 
maximize the stability with respect to variations in flow velocity; in this case 

a: =A, a f 2 = 2  24‘ (2.12) 

Having constructed an equilibrium distribution appropriate for the inviscid (Euler) 
equations, let us next consider how to obtain the correct form for the viscous terms in 
the fluid equations. We require that the linearized collision operator satisfy the 
following eigenvalue equations : 

C LZij = 0, ci Tij = 0, C Tij = A m ,  3 3  C C: Tij = A, ~ j ” .  (2.13) 
i i i i 

The first two equations follow from conservation of mass and momentum and the last 
two equations describes the isotropic relaxation of the stress tensor; the eigenvalues A 
and A, are related to the shear and bulk viscosities (2.34). Equations (2.13) account for 
10 of the 18 eigenvectors of 9. The remaining eight modes, comprising some higher- 
order moments of 9, are not relevant to simulations of the Navier-Stokes equations 
and will be ignored. Their eigenvalues are set to -1 so that these modes are then 
projected out entirely from the post-collision distribution; this both simplifies the 
simulation and ensures the fastest possible relaxation of the non-hydrodynamic modes. 
The computational procedure to update the lattice-Boltzmann equation is therefore 
quite straightforward. At each site the moments p, j ,  and II (l.lO), and the equilibrium 
momentum flux IIeq,  (2.4), are calculated; the momentum flux is then updated 
according to (2.13) : 

flap = 17:; + (1 + A) <nap - F$) + +( 1 + AB) (IT),? - I7Z) Sap. (2.14) 

The post-collision distribution, ni + Ai(n), is determined by the requirement that the 
new populations are consistent with (1. lo), so that 

ni + Ai(n) = a? p + apj, cia + ac,i flap- + a$(& - 3pc3 ; (2.15) 
the term -3pcia2 keeps II’ orthogonal to p. 
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Next we examine the macrodynamical behaviour arising from the lattice-Boltzmann 
equation; our method of solution is the usual multi-timescale analysis (Frisch et al. 
1987). We begin with conservation equations for the moments of the distribution 
function : 

C ni(r + ci, t + 1) = C ni(r, t) ,  
i i 

C n,(r + ci, t + 1) cia = ni(r, t )  cia, 
i i 

(2.16) 

(2.17) 

C ni(r + ci, t + 1) = C ni(r, t )  -+ npeq (r,  t )  w, (2.18) 
i i i 

C ni(r + ci, t + 1) ci = C ni(r, t )  c: + h, C npeQ (r, t )  ci. (2.19) 

To find the long-time long-wavelength dynamics, a scaling parameter e is introduced, 
defined as the ratio of the lattice spacing to a characteristic macroscopic length; the 
hydrodynamic limit corresponds to e < 1. In a molecular gas the appropriate scaling 
parameter is the Knudsen number, the ratio of the mean-free path between collisions 
to the macroscopic lengthscale. The parameter c plays a similar role to the Knudsen 
number in the Chapman-Enskog method (Chapman & Cowling 1960); it is used, first 
of all, to separate the relaxation of the equilibrium and non-equilibrium distributions 

i i i 

ni = n:q+en%eq. (2.20) 

However, because the lattice spacing and the mean-free path are comparable, there are 
additional contributions to the viscous momentum flux, which do not appear in the 
ordinary kinetic theory of gases (see (2.32)). In order to remove discrete lattice artifacts 
from the macroscopic equations, it is convenient to define a macroscopic space scale 
r,  = cr, and two macroscopic timescales t ,  = et and t ,  = c2t; this enables a separation 
to be made between the propagation of sound ( tJ and the diffusion of vorticity ( t 2 )  
(Frisch et al. 1987). 

Expanding the finite differences, n,(r + ci, t+ 1) -ni(r,  t )  ((2.16)-(2.19)), to second 
order about Y and t ,  and collecting terms that are first order in E we obtain the 
relaxation on the t ,  timescale: 

att, C n:q + V, C nqq cia = 0, (2.21) 
i i 

at1 niq cia cip+ V, nfq cia ci, ciy = h C npeq z&j + +ARC npeq ct &a.p. (2.23) 
i i i i 

The gradient operator refers to derivatives on the macroscopic Y, space scale, i.e. 
V =arl. The equations for mass and momentum conservation ((2.21) and (2.22)) can be 
rewritten using (2.4): 

atlP+V.(Pu) = 0, (2.24) 
atl(pu)+v.(pi +puu) = 0, (2.25) 

which are the Euler equations of hydrodynamics. Substituting the equation of state 
p = pc," and linearizing the Euler equations with respect to Sp and u, it is found that, 
for small density fluctuations, 

a+ = C: vzP. (2.26) 
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Equation (2.26) shows that density fluctuations relax via the propagation of sound 
waves, on a timescale t,, and therefore decouple from the t ,  timescale evolution of the 
viscous stresses. The time derivative that appears in (2.23) can be evaluated by using 
(2.24) and (2.25) to express the time derivatives of p and pu in terms of spatial 
derivatives : 

att ,  c n:q Cia ci, = at,( PC," %, + PUa up) 
i 

= - V,(PU, u, U y )  - C:[U,vpP + U,V, P + V,(PU,) &I. (2.27) 

The spatial derivative of the third-order moment can be evaluated directly from (2.10) 
and (2.11) : 

v, c. neq cia cip ciy = S[V,(PUp) + Vp(PUJ + V,(PU,) L p l .  (2.28) 
i 

In the incompressible limit, variations in density can be ignored, so that 

at1 c n:q mCip + V, 2 n9q mp ciy = $p[V, up + V, u, - $V , uy Jab], (2.29) 

with errors of order Vu3. Then, from (2.23), the Navier-Stokes form for the viscous 
stresses can be obtained: 

i i 

(2.30) 

Hereafter the non-equilibrium (viscous) contributions to the pressure will be ignored. 
Since the Mach number in our simulations is typically lo-' or less, the effects of 
compressibility can be safely ignored. It is interesting to note that if the speed of sound 
c, were set to 4; instead of l/$, then inspection of (2.27) and (2.28) indicates that the 
correct form for the viscous stresses, including the non-equilibrium pressure, would be 
obtained (with corrections of order Vu3),  even for non-zero Mach numbers. For such 
simulations, an additional density of zero-velocity particles is required to maintain 
stability (McNamara & Alder 1993). 

The t ,  relaxation of the mass and momentum densities can be found from the order- 
e2 terms in the expansion of (2.16) and (2.17) : 

atz n:q = atPp = 0, (2.31) 
i 

at2 C n:q cia + gV,(atl C n:q cia ci,+ V, C n:q cia cip ci,) + V, C nreq cia cip = 0. (2.32) 

Equation (2.31) shows that the fluid is incompressible on the t ,  timescale; all relaxation 
of density fluctuations takes place on the t ,  timescale. Using (2.29) and (2.30) the long- 
time variation of the viscous stresses can be expressed in a form identical to the 
incompressible Navier-Stokes equations, 

i i i i 

where 

(2.33) 

(2.34) 

is the shear viscosity; once again terms proportional to V - u  are neglected. 
The shear viscosity, (2.34), contains two distinct contributions : the first, proportional 

to A-l, arises from the molecular-like collisions, (2.13); the second term comes from the 
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diffusion of momentum caused by the finite lattice, (2.29). In most situations of 
practical interest the collisional and lattice contributions to the viscosity are of 
comparable magnitude. Fortunately they both have exactly the same dependence on 
velocity gradient, so that they may be combined into a single transport coefficient. A 
linear stability analysis shows that h must be bounded in the range -2 < h < 0 
(Higuera et al. 1989; McNamara & Alder 1993), otherwise the shear stress grows 
exponentially in time and the simulation is unstable. The bounds on h correspond to 
the simple physical requirement that the viscosity is positive. At non-zero Reynolds 
numbers the viscosity is bounded by a more stringent nonlinear stability criterion, 
which has not yet been worked out in detail, but whose general character is known. 
Essentially the quantity pu2/v (v is a characteristic flow velocity) must be smaller than 
some positive constant of order I ; thus there is an upper bound to the flow velocity, 
proportional to the square root of the viscosity. 

Combining the relaxation of the momentum density on the t ,  and t ,  timescales leads 
to the incompressible Navier-Stokes equation 

at(pu) + v - (puu) = - v p  + vv2u, (2.35) 

with equation of state p = pc,". Once again we point out that for the 18 velocity 
model used in this work, the simulations are only valid at low Mach numbers; slightly 
more complex models are needed to capture compressibility effects correctly. In the 
remainder of this paper, it will be assumed that the simulations will be run under 
conditions of low Mach number, with particle velocities U much less than the sound 
speed c,; thus V - u  = 0 to a good approximation. 

Many flows involving particulate suspensions occur at low Reynolds number, and 
can be modelled by the creeping-flow or Stokes equations 

v . u  = 0, v p  = ?pu; (2.36) 

or, in terms of the momentum density j = pu and the kinematic viscosity I/ = r / p ,  

0 - j  = 0,  Op = vVY. (2.37) 

In our simulations the Stokes equations are not modelled directly, but rather as a long- 
time limit of the linearized Navier-Stokes equations 

a t p = - V . j ,  a , j = - V p + v V j ;  (2.38) 

(2.38) can be simulated directly by a change in the equilibrium distribution (cf. (2.5)), 

neq = act op+apj .c i .  (2.39) 

Finally, a significant simplification of the code occurs when h = - I ,  corresponding 
to a viscosity 7 = ip. Although such a large viscosity is not suitable for high-Reynolds- 
number flows, in the creeping flow limit it allows for a considerable simplification of 
the collision operator 

ni + Ai(n) = a$ p + a? j .  c2, (2.40) 

which requires less than half the number of floating-point operations as (2.15); most 
of our R, = 0 simulations use this viscosity. 

3. Solid-fluid boundary conditions 
To simulate the hydrodynamic interactions between solid particles in suspension, the 

lattice-Boltzmann model must be modified to incorporate the boundary conditions 
imposed on the fluid by the solid particles. The basic methodology is illustrated in 
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FIGURE 2. Location of the boundary nodes for a circular object of radius 2.5 lattice spacings. The 
velocities along links cutting the boundary surface are indicated by arrows. The locations of the 
boundary nodes are shown by solid squares and the lattice nodes by solid circles. 

figure 2. The solid particles are defined by a boundary surface, which can be of any size 
or shape; in figure 2 it is a circle. When placed on the lattice, the boundary surface cuts 
some of the links between lattice nodes. The fluid particles moving along these links 
interact with the solid surface at boundary nodes placed halfway along the links. Thus 
a discrete representation of the particle surface is obtained, which becomes more and 
more precise as the particle gets larger. 

Lattice nodes on either side of the boundary surface are treated in an identical 
fashion, so that fluid fills the whole volume of space, both inside and outside the solid 
particles. The boundary-node update rules described later in the section (see (3.2) and 
(3.3)) decouple the interior and exterior fluid regions, so fluctuations in the interior 
fluid have no effect on the exterior flow. The interior fluid is kept for computational 
convenience only, since it avoids the necessity of creating and destroying fluid as the 
particle moves. In the creeping-flow regime the interior fluid has relaxed to a rigid-body 
motion, characterized by the particle velocity and angular velocity, and exerts no force 
or torque on the particle. However, the interior fluid does exert a time-dependent force, 
which, to leading order in a2/ut,  is equivalent to its inertial mass. Further deviations 
at short times are discussed in 95 of Part 2; in general they are negligible. 

In comparison with our previous work (Ladd et al. 1988; Ladd & Frenkel 1989, 
1990; Ladd 1991 ; van der Hoef et al. 1991), here we have chosen to place the boundary 
nodes on the links connecting the interior and exterior regions, whereas in our lattice- 
gas simulations they were located on the nodes closest to the boundary surface. There 
is little to choose between the two methods; the link method has the advantage that it 
provides a somewhat higher resolution of the solid boundary surface, as can be seen 
(figure 2) from the much larger number of boundary nodes compared with the number 
of lattice nodes just inside the surface. On the other hand the node method is faster, 
although this is of less significance in the computationally more intensive lattice- 
Boltzmann (as opposed to lattice-gas) simulations. Although at present our lattice- 
Boltzmann simulations have been limited to simple symmetrical objects - spheres, 
disks and plane walls - this restriction is not fundamental: in fact a limited number of 
lattice-gas simulations containing elongated objects have already been reported (van 
der Hoef 1992). 
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FIGURE 3. Population densities before and after a collision with a boundary node. The effects of 
stationary (a) and moving (b and c) boundary nodes on the incoming populations are shown. The 
arrows indicate the velocity direction and the lengths of the solid lines are proportional to the 
population densities. The differences between population densities are highly exaggerated for clarity. 
Note that the effects of the moving boundary are the same in (b)  and (c), because the velocity 
component parallel to the link direction is the same. 

At each boundary node there are two incoming distributions ni(r,t+) and 
n,.(r + cil t+), corresponding to velocities ci and ci.(ci, = - cJ parallel to the link 
connection Y and r + c i ;  the notation ni(r, t+) = ni(r, t )  +Ai(r ,  t )  is used to indicate the 
post-collision distribution (equation (2.15)). In some cases boundary nodes for two 
different link directions, perpendicular to one another, may be coincident (see figure 2); 
these are treated independently. The velocity of the boundary node ub is determined by 
the solid particle velocity U, angular velocity 52, and centre of mass R,  

Ub = u+nx (Y++R). (3.1) 

By exchanging population density between ni and ni. the local momentum density of 
the fluid can be modified to match the velocity of the solid particle surface at the 
boundary node, without affecting either the mass density or the stress, which depend 
only on the sum ni + niJ. Because the stress tensor is unaffected by the boundary-node 
interactions, it then follows that the hydrodynamic stick boundary condition applies 
right up to the solid surface, without any intervening boundary layer (Ladd & Frenkel 
1990). This point will be discussed in more detail later. The mechanism for the 
boundary-node interactions is illustrated in figure 3. In figure 3(a)  we see the two 
incoming populations, ni(r, t+) and n,,(r+ ci, I+), interacting with a stationary boundary 
node. In this case, the populations are simply reflected back in the direction they came 
from (Frisch et al. 1987; Cornubert, d'Humieres & Levermore 1991), so that 

(3.2) 
In figures 3(b) and 3(c) the effects of a moving object can be seen. In addition to 
reflection, population density is now transferred across the boundary node, in 
proportion to the velocity of the node ub, 

ni(r+ci, t+  1) = ni.(r+ci, t+)+2a',ipub.ci,\ 

n,.(r, t + 1) = ni(r, t+) -2a;ipub.ci; 

these results are ensemble averages of our earlier boundary-node collision rules for 
lattice gases (Ladd & Frenkel 1989; Ladd 1991). Only the velocity component of the 
boundary node along the link direction (c,) is included in the calculation of population 
transfer; thus the outcome in figures 3(b) and 3(c) is the same. The general form for 

n,(r + ci, t + 1) = n,(r + ci, t+) and n,.(r, t + 1) = n,.(r, ti). 

(3.3) 1 
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the boundary-node interactions in (3.3) is determined by the requirement that the local 
mass density and stress tensor are conserved; thus rearrangements of population can 
only be made among pairs of opposite velocities. Furthermore, for stationary nodes the 
usual ‘bounce-back’ condition (3.2) must be recovered. The exact amount of 
population density transferred (i.e. the magnitude of the ub-ci  term) is determined by 
the requirement that any distribution consistent with the boundary-node velocity u b  is 
stationary with respect to interactions with the boundary nodes. It is not obvious that 
(3.3) satisfies this condition, but it will be verified in the next paragraph that this is 
indeed so. 

Let us now examine boundary-node interactions in more detail. From $ 2  we know 
that the distribution function at a node can be written as the sum of equilibrium, (2.5), 
and non-equilibrium contributions. The non-equilibrium part is proportional to 
qq; the proportionality constant can be determined from (2.30), using the relation 
Ei ac,i ciy8 = +(Sxy Sps + S,,S,, - ;Sap S,,,) : 

nFeq = - a2 a:-. (3.4) 

Ignoring terms proportion to V - u, the collisional stress tensor in (3.4) can be expressed 
in terms of velocity gradients (2.30), 

Anpeq = a? pc, ci : Vu; (3.5) 

here we have substituted a? for $a?, (2.1 1). The post-collision distribution 

ni(r, t+) = n:q(r, t )  + (1 + A )  n;eq (r, t )  

(cf. (2.14) and (2.15) with A, = - 1) is then given, to the same approximation, by 

ni(r, t+) = ni(r, t )  +a? pci ci : Vu(r) = nir(r, t )  + 2a4i pu(r). ci + appc, ci : Vu(r), (3.6) 

where the symmetries in the distribution functions for velocity directions i and i‘ have 
been exploited. If there is a boundary node located at r+frci, then the population 
n,.(r, t+ 1) is modified according to (3.3), i.e. 

ni,(r, t + 1) = n,,(r, t )  + 2a4i p[u(r) + +ci - Vu(r) - ub(r + - ci ; (3.7) 

thus the distribution is stationary when the fluid velocity u(r+frci) = u(r) +frc,.Vu(r) is 
equal to the boundary-node velocity ub. 

To illustrate the action of the boundary nodes more clearly, we consider, as an 
explicit example, planar Couette flow. Figure 4 shows a two-dimensional projection of 
the lattice-Boltzmann model onto the (x,y)-plane; the system is assumed to be time 
independent, and translationally invariant in the y -  and z-directions. As an idealized 
model of a solid particle surface, two infinite planes of boundary nodes are set up, at 
x = 0 and x = L. In the fluid between the boundary surfaces (0 < x < L)  there is a 
uniform velocity gradient V, u,(x) = y ;  outside the boundary planes, the fluid moves 
with uniform velocity equal to the wall velocity. Note that in this example, the lattice 
nodes are more conveniently set to half-integer values of x. The problem is to find the 
distribution function for this flow geometry that is stationary under the action of the 
boundary-node microrules, with velocities ub(x = 0) = 0 and ub(x = L) = yL.  A 
related problem, involving mixed stick-slip boundary conditions at a stationary wall, 
has been addressed by Cornubert et al. (1991). 

The expected velocity distribution in a uniform velocity gradient can be constructed 
from the equilibrium distribution for Stokes flow (2.39) and the non-equilibrium 
distribution (3 .9 ,  

(3.8) An:eq = aFpciz ciy y .  
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FIGURE 4. A two-dimensional projection of the lattice-Boltzmann fluid, bounded by plane walls. The 
boundary nodes are shown as squares and the boundary planes (x = 0 and x = L) by dashed lines. 
The circles are the lattice nodes; the set of nodes explicitly considered in the text are shown filled. The 
fluid between the walls is subjected to a velocity gradient by the relative motion of the walls; the fluid 
outside the walls moves with uniform velocity equal to the wall velocity. The labelling of velocity 
directions used in the text is also shown; velocity components in the z-direction have been projected 
onto the (x,y)-plane. There is an additional density of stationary particles (not shown), labelled 0, 
corresponding to velocities [0, 0, f 11. The lower portion of the figure is a plot of the velocity profile, 
with the crosses showing the fluid velocity u, at the nodes and the dotted line the interpolation 
between nodes. 

Using the notation of figure 4, the velocity distribution function in the fluid 
(0 < x < L) can be written explicitly as 

the densities no-n4 have been multiplied by 4 to account for the number of projected 
velocities, and the mass density has, for convenience, been set equal to 24. The velocity 
distribution away from the boundaries is updated according to the usual time evolution 
of the lattice-Boltzmann equation. The post-collision distribution is computed from 
(1. lo), (2.14), and (2.15), then propagated to the neighbouring nodes using (2.1). The 
new velocity distribution, denoted by n’, is 

(3.10) I ni(x) = 4, 

ni(x) = 4, ni(x) = 4, 
nh(x) = 4( 1 + 2yx), $(x) = 4(1-2yx), 
nk(x) = [ I +  2y(x - 1) + 2y( 1 + h)/h], ni(x)  = [ 1 - 2y(x + 1) + 2y( 1 + h)/h], 

n;(x) = [ I  - 2y(x - 1) - 2y( 1 + h)/h], nL(x) = [ 1 + 2y(x + 1) - 2y( 1 + h)/h], 
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which is identical to the initial distribution (3.9), as required. For lattice-nodes adjacent 
to the solid-fluid boundaries, the update of some of the population densities is affected 
by the boundary nodes ( 3 . 3 ) :  explicitly 

(3.11) I Ilk($) = [ 1 - 274) + 274 1 + h)/h], 

n:(f) = [ 1 + 274) - 2y( 1 + h)/hl, 

nL(L - $) = [ 1 + 2y(L -;) + 2y( 1 + h)/h] - 4yL, 

ni(L-i) = [1-2y(L-;)-2y(l +h)/h]+4yL, 

which, once again, is identical to the initial distribution (3.9). Thus the boundary-node 
collision rules generate an exact linear shear flow; this is because they maintain the 
second-order accuracy of the pure fluid model. Furthermore, the velocity distributions 
outside and inside the particle are isolated from one another; thus a sharp change in 
velocity gradient from the inside to the outside the particle surface can be supported, 
as illustrated in figure 4. 

As a result of the boundary-node interactions (3.3), forces are exerted on the solid 
particles at the boundary nodes, i.e. 

Ar +&, t + i) = - [n,(r + ci, t + 1) - IZi’(Y, t + 1) - ni(Y, t+) + n,(r + ci, t+)] ci 

= 2[nt(Y, t+) - n& + ci, t+) - 2a?pu, * Ci] ci;  (3.12) 

thus momentum is exchanged locally between the fluid and the solid particle, but the 
combined momentum of solid and fluid is conserved. The forces and torques on the 
solid particle are obtained by summing Ar + ;ci) and (Y +&) x A r  + ic,) over all the 
boundary nodes associated with a particular particle. As an example, (3.12) can be used 
to compute the drag force per unit area on a planar wall adjacent to a steadily shearing 
fluid. We compute the force on one face of each solid boundary surface, assuming that 
the fluid on the other side is moving uniformly with the velocity of the boundary (as 
shown in figure 4) and therefore exerts no force on the wall; this corresponds to 
replacing one of the distributions in (3.12) by its equilibrium form (2.39) with a velocity 
equal to the wall velocity. Using the distributions at t ,  just after the molecular collision 
process ((3.9) with l /h  replaced by (1 +h)/h) the wall forces are found to be 

1 (3.13) 
f,(O) = 2[ - n,&, t+) + n&, t+)l = - 4(2/h + 1) y = 77, 
f , ( ~ )  = 2[n,(~ - $, t+) - n , ( ~  -;, t+) - 4 ? ~ ]  = 4(2/h + 1) y = - 77; J 

the last equality follows from summing the collisional and lattice contributions to the 
viscosity (2.34), using p = 24. Thus the wall force is computed exactly for linear shear 
flows. 

As a preliminary application of the method to time-dependent flows, we consider the 
evolution of the flow field from an impulsively started flat plate. The geometry is 
similar to figure 4, with the plates being sufficiently far apart that they do not interact 
over the duration of the simulation. We focus on a single plate (x = 0). Initially the 
system is at rest; at t = 0, an impulsive force gives the plate a constant velocity 
[0, U, 01. In this problem it is again convenient to define the lattice nodes at half-integer 
values of x, and for the fluid to reside at the lattice nodes at half-integer values of the 
time; then the boundary conditions at the plate are applied at x = 0 and t = 0 precisely. 
We compute numerically the evolution of the flow field [0, u(x, t) ,  01, created by the 
diffusion of vorticity into the fluid, and compare with the analytic solutions for the 
velocity field (Batchelor 1967) 

U ( X ,  t )  = U{ 1 - @[x/(4vt)i]}, (3.14) 
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FIGURE 5. Flow induced by an impulsively loaded flat plate, U(t)  = 0 for t < 0 and U(t) = U for 
t > 0. The plots show the velocity field and force per unit area on the wall at various times; the solid 
circles are the numerical simulations and the solid lines are analytical results (Batchelor 1967). 

and the force per unit area 

A t )  = gv, u(0, t )  = - gU(nvt)-i; (3.15) 

v = ~ / p  is the kinematic viscosity of the fluid and @ is the error function. The results 
are shown in figure 5 (for a viscosity v = +) at several different times. It can be seen that 
there is complete agreement, except at very short times and distances. This simple test 
implies that both stationary and time-dependent flows can be simulated accurately, as 
will be confirmed by further results in Part 2. 

Next, consider flow perpendicular to the wall. The incompressibility condition 
means that there can be no velocity gradients in steady flow; thus the fluid velocity and 
the wall velocities are [u, 0, 01. For this flow the model shown in figure 4 can be further 
simplified to just three velocity directions : stationary particles, and particles moving in 
the positive and negative x-directions. The projected distributions are 

(3.16) 

Clearly this distribution is stationary with the respect to the evolution of the lattice- 
Boltzmann equation; it is also stationary with respect to the boundary-node update 
rules (3.3). However, this is not the only stationary distribution that satisfies the 
boundary conditions. A more general form for the distribution function, which 
exhibits a two-time-step repeat cycle is 

(3.17) 

it is straightforward to verify that this distribution also satisfies both the time evolution 
equation and the boundary conditions at the walls. Thus the fluid has a uniform 
momentum pu and a ‘staggered’ momentum (- l)t+zpw. Staggered momenta are an 
artifact of all lattice models (Zanetti 1989); the precise value of the staggered 
momentum depends on the channel width (in this example) and the initial conditions. 
Although staggered momenta cannot arise spontaneously in the fluid, they can be 
generated at solid surfaces, as seen in this example. However, it can be shown by 
techniques similar to those used above that staggered momentum parallel to the walls 
is damped by the boundary conditions, so that for plane Couette flow the steady 
solutions have no staggered momentum component. 

In the more complex geometries that are of interest in particulate suspensions, it is 

no(x) = 12, nl(x)  = 6( 1 + 2u), n2(x) = 6( 1 - 2u). 

no(x) = 12, n,(x) = 6( 1 + 2u + ( - l)t+”2w), n,(x) = 6( 1 - 2u - (- 1)t+z2w) ; 
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impossible to analyse the staggered momenta analytically. Numerical results show that 
large oscillations in particle torques can be built up by a feedback mechanism in which 
the staggered momenta are fed by ever-increasing angular velocities of the particles. To 
overcome these instabilities we average the force and fluid velocity over two successive 
time steps which effectively cancels out the staggered momentum contribution. In the 
above example, this gives a uniform flow field with velocity [u, 0, 01 regardless of the 
magnitude of the staggered momenta. Since the forces at the boundary nodes are 
generated at the half-integer time steps, the smoothly varying force f at the 
intermediate integer time is 

j p + ; c i ,  t )  = ~lf(r+;ci,t-;)+f(r+;ci, t+;)]. (3.18) 

We can calculate the smooth part of the fluid velocity field at half-integer time steps 
in a similar way, 

U(r,  t +$) = $[u(r, t) + u p ,  t + l)], (3.19) 

or at integer time steps using the three-point formula 

u(r, t )  = +[u(r, t - 1) + 2u(r, t )  + u(r, t + l)]. (3.20) 

The velocities of finite-mass particles (as opposed to infinitely massive fixed objects) are 
updated every two time steps, 

U(t+ 1) = U(t- 1)+2M-lF(t), Q(t+ 1) = Q(t -  1)+2/-'* T(t). (3.21) 

The particle mass M and moment of inertia /are preassigned parameters which control 
the rate at which particles respond to the fluid flow ; usually M and / are on the order 
of several thousands (in lattice units). Since the particle velocities vary slowly on the 
timescale of a lattice-Boltzmann cycle, the precise form for the update is usually not too 
important; however, it is important to use time-smoothed forces and torques, as 
described in (3.18). 

So far only flows with linear velocity profiles have been considered. In the next and 
last example a stationary, two-dimensional channel flow is examined. The geometry is 
again shown in figure 4, this time with stationary walls (u, = 0). The fluid is driven by 
a pressure gradient, which is represented in the simulation by a uniform force density 
in the fluid. Thus a constant increment Aju is applied to the y-momentum at each node, 
so that the pressure gradient down the channel is V u p  = Aju. The fluid velocity at each 
node is measured after half the force has been applied; it was found empirically that 
this prescription gives the fastest convergence as a function of system size. The steady 
flow profiles are compared with the analytic solution, 

(3.22) 

in figure 6. It can be seen that the agreement is very good for channels more than 
about 9 lattice spacings wide. Furthermore, the force on the walls is exact, no matter 
what the channel width. This result follows from the balance between forces on the 
walls and the total force from the pressure gradient. Since the pressure forces are 
distributed equally on the walls it follows that the wall force per unit areaf= ;Aju L,  
which is the correct result for Poiseuille flow. 

In this section it has been shown that moving solid boundaries can be incorporated 
into a lattice-Boltzmann simulation, and it has been indicated how they function for 
a few simple examples. In Part 2 numerical results for spherical particles are described, 
both in periodic arrays and random assemblies. Results are compared with known 
analytic and numerical solutions of the creeping-flow and Navier-Stokes equations. 
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FIGURE 6. Poiseuille flow in two-dimensional channels for different channel widths, L. The 
simulated velocities (solid circles) are scaled by the theoretical maximum value u,, = Aj, L2/8r .  

4. Fluctuations 
In recent years, it has become increasingly apparent that the lattice-Boltzmann 
equation is a much better simulation tool for hydrodynamics than lattice gases. 
However, in its normal state the lattice-Boltzmann equation cannot model the 
molecular fluctuations in the solvent that give rise to Brownian motion. Of course in 
many situations Brownian motion is unimportant, but, for suspensions of sub-micron- 
sized particles, it is a fundamental component of the dynamics. It has been shown 
recently (Ladd 1993) that fluctuations can be incorporated into the lattice-Boltzmann 
equation, within the framework of fluctuating hydrodynamics (Landau & Lifshitz 
1959), by adding a random component to the fluid stress tensor. Numerical tests 
showed that the resulting particle motion, in dilute to concentrated suspensions, closely 
matched experimental results (Zhu et al. 1992; Kao, Yodh & Pine 1993), even at very 
short times where particle inertia plays an important role. In this section a basic theory 
of fluctuations, as it applies to the lattice-Boltzmann model, is described; in Part 2 
numerical tests of the method for particulate suspensions of spheres will be reported. 

The fundamental idea behind fluctuating hydrodynamics is that, on lengthscales and 
timescales intermediate between the molecular and the hydrodynamic, thermally 
induced fluctuations can be reduced to random fluctuations in the fluxes of the 
conserved variables, i.e. the stress tensor and perhaps the heat flux also. At longer 
wavelengths, fluctuations are unimportant and the usual equations of hydrodynamics 
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are recovered; at short scales the hydrodynamic picture breaks down and only a fully 
molecular description will suffice. Since the fluxes are included explicitly in a lattice- 
Boltzmann simulation, it is plausible that molecular fluctuations can be modelled 
realistically on intermediate scales, even though the details of the microscopic 
interactions are different. In the present context, this means that the time evolution of 
the velocity distribution includes a stochastic term ni(r, t) ,  representing the thermally 
induced fluctuations in the stress tensor: 

n,(r+ ct, t )  = ni(r, t )  + Ai(r, t )  + nL(r, t ) ,  (4.1) 

(4.2) 

where n’ is chosen so that only its stress moment is non-zero (cf. (3.4)), 

n! = -ac __ zz c a p  Cia CiJ? 

These random stress fluctuations cLp are uncorrelated in space and time (Landau & 
Lifshitz 1959) and are sampled from a Gaussian distribution, 

(4.3) 
the choice of the variance A serves to define the effective temperature of the fluid. We 
can determine the relationship between A and the temperature via the fluctuation- 
dissipation theorem. 

It is convenient in what follows to work in Fourier space, defining the Fourier 
transform of the velocity distribution function as 

<d/k 0 flp, t’>> = AS,,,S,,,(S*,Sps+Sa,Sp,--SaaBSys); 

where the sum is over all the lattice points in the periodic unit cell. Then the equation 
for momentum conservation (2.17) can be written as 

C n,(k, t + 1) -nt(k, t)]  c, = 0 ;  (4.5) 

we will attempt to cast this equation into the form of a Langevin equation for the 
transverse (or solenoidal) momentum fluctuations jL (k ,  t )  = ( I  - kk) j ( k ,  t )  (k is the 
unit vector k / k ) .  Expanding the exponential, we have 

jl(k, t+ l ) - j l (k ,  t)+ik.TI(k, t+ 1).(I -kf)-ik2j,(k, t+  1) = O(k4), (4.6) 
where n(k ,  t )  = C, n,(k, t )  qq is the traceless part of the momentum flux. (The third- 
order terms in k involve fourth-order moments of nt, which are proportional to the 
identity tensor. Thus the k3 contributions lie parallel to k and have no transverse 
component.) To obtain a Langevin equation, the momentum flux is divided into a 
slowly relaxing dissipative part and a rapidly varying fluctuating part. In $2, it was 
shown that on the shorter c-l timescale, the stress relaxed to its Navier-Stokes form 
(2.30), whereas the velocity gradients varied on a longer c-’ timescale. Thus the 
fluctuating stress Z is defined as 

i 

cap = - [nap - (1 / 3 4  (VJ,  + vp.ia - $vyjy t& (4.7) 
ignoring density fluctuations (because they do not couple to the transverse momentum 
flux) and nonlinear puu terms (because we are examining small lengthscales where the 
Reynolds number is negligible). Combining (4.6) and (4.7), and summing the 
col!isional(1/3h) and lattice (i) contributions to the viscosity (2.34), we obtain a discrete 
Langevin equation for the transverse momentum fluctuations, 

jL (k ,  t + 1) -jL(k,  t )  + vk2j,(k, t + 1) = ik . Z(k, t + 1). (1 - kk), (4.8) 
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with a random force ik. C(k, t+ 1)- (I -I%). The solution of this equation is described in 
the Appendix; the result is (cf. (A8)) 

m 

2uO',(k) .jL( - k ) )  = c ( 6 .  C ( k ,  t )  . ( I  - R R ) .  C( - k ,  0). R ) .  (4.9) 
t=-m 

The effective temperature of the fluid can be determined by equating the fluctuations 
in momentum to those in real fluids; for a molecular fluid of N particles of mass m, 

( j L ( k ) - j l ( - k ) )  = - C eCik.RwUi-vj = 2Nmk, T = 2pVk, T, (4.10) 

where the factor $ comes from the missing longitudinal fluctuations. In the long- 
wavelength limit we can isotropically average over the directions of k ,  with the result 

2 (  3 a , j = 1  hT ) 

lim(k.Z(k, t ) . ( l - R R ) . Z ( - k , O ) . & )  = $(Z(t):Z(O)) = 2(L'z,(t)L'z.(0)), (4.11) 
Ic+O 

where c(t) = limZ(k, t )  = C a(r, t). (4.12) 

Combining (4.9)-(4.11) leads to a fluctuation formula for the viscosity, 

k-0 I€ V 

m 

7 VkB T = ;(T&4 L',,(O)) + c (c,,(t> &JO))? (4.13) 

which is an analogue of the Green-Kubo relation for molecular liquids (Hansen & 
McDonald 1986). The summation in (4.13) is the equivalent of a Simpson's rule 
approximation to the time integral that appears in the usual Green-Kubo formulae. In 
Part 2 this expression is used to calculate suspension viscosities, replacing the fluid 
stress tensor with the combined stress tensor of the solid and fluid phases. 

Let us now consider the time evolution of the stress tensor in the pure fluid. The total 
stress fluctuations Z in a volume V are independent of the propagation of population 
density; they vary only because of collisions and random fluctuations. Thus the time 
evolution of C including the random fluctuations can be written as 

t=1 

Z ( t + l ) =  ( l+h)C(t)+Ca'(r , t ) .  (4.14) 

Since ( ~ ' ( r ,  t )Z(O))  = 0 for all t 2 0, the time correlation function of the stress 
fluctuations can be written in terms of equal-time correlations (cf. (A4)), 

(C(0 W)) = (1 + (Z(0) ; (4.15) 

thus from (4.13) and (2.34) the effective temperature can be related to the equal-time 
stress fluctuations, 

pVk, T = 3 (L':,). (4.16) 

Finally, we must relate the equal-time stress fluctuations to the fluctuations in the 
random stress tensor. This can be done by noting that (4.14) is a discretized Langevin 
equation for the stress tensor, for which the random forces at different times are 
uncorrelated (see the Appendix). Since 1(1 + A)l < 1, the equal-time correlation function 
is given by ((A7) and (4.3)) 

P€V 

(4.17) 
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FIGURE 7. Stress-stress correlation function for a lattice-Boltzmann fluid. Numerical results (solid 
circles) and theoretical results from (4.15) (solid lines) are shown for different values of A. 

Then, from (4.16) and (4.17) 

A = (&k, 7") [ 1 - (1 + = 2ykB Th2, (4.18) 

which is the fluctuation-dissipation relation for our fluctuating lattice-Boltzmann 
equation. It defines the effective temperature of the fluid so that the dissipation, (2.34), 
and fiuctuation, (4.13), expression for the viscosity are consistent. 

Some numerical tests of the fluctuating lattice-Boltzmann equation are illustrated in 
figure 7. Here simulation results for the stress-stress correlation function are compared 
with theoretical results, (4.15), for a range of values of A, covering kinematic viscosities 
from about lop3 to about 30. For both the over-relaxing collision operators 
(-2 < h < - l), where the stress tensor changes sign at every time step, and for the 
under-relaxing collision operators (- 1 < h < 0) the agreement between theory and 
simulation is perfect. In general, values of h close to - 1 are chosen, to minimize the 
relaxation time of the stress fluctuations. The special case h = - 1 is particularly useful ; 
here the stress fluctuations decay instantaneously, since only the random part of the 
stress tensor gets propagated at each time step (see (4.14)). In this limit the expression 
for A ,  (4.18), reduces to the Landau-Lifshitz (1959) result A = 27kB T. 
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5. Conclusions 
In this paper the theoretical foundation for a new simulation technique for 

particulate suspensions has been described. Much of the theory underlying this work 
is now well understood; in particular the macroscopic fluid dynamics arising from the 
various lattice-Boltzmann models, and the modelling of hydrodynamic stick boundary 
conditions by local modifications to particle populations. The computational 
effectiveness of the method will be demonstrated in Part 2. The inclusion of fluctuations 
in the stress tensor is a more recent development (Ladd 1993) and is less well 
understood. Nevertheless, we have been able to derive discrete analogues of the basic 
equations of fluctuating hydrodynamics; again the numerical tests reported in Part 2 
provide convincing evidence of the correctness of the approach. 

This work was supported by the U.S. Department of Energy and Lawrence 
Livermore National Laboratory under Contract No. W-7405-Eng-48. 

Appendix. Discrete Langevin equation 
The discrete Langevin equation, (4.8) or (4.14), is of the general form 

j ( t+I) - j ( t )  = -aj( t )+f( t ) ,  (A 1) 
where a is a positive constant controlling the rate of dissipation (0 < a < 2), andAt) 
is the random force. The random force has the usual property 

( f ( t>j( t ' )> = 0, (A 2) 
for all t 2 t'. We can rewrite (A 1) as 

t' 

j ( t+t ' )  = ( l -a) t , j ( t )+C (l-a)"-lf(t+t'-s), (A 3 )  
s=1 

and from (A2) the time correlation function can be expressed in terms of equal-time 
fluctuations, 

( A t +  t')j(t)> = (1 - 4 t ' ( j ( t ) A o > .  (A 4) 

The equal-time correlations, measured from some initial time ( t  = 0), are given by 

t ' t '  

(j( t ' ) j( t ' )> = (1 -~l)" '( j(O)j(O))+ C C (1 -~)s+ ' " -2( ( f ( t ' -~) f ( t ' -s ' ) ) .  (A5) 
s=1 s'=l 

In the long-time (t'+m) limit the system loses all memory of its initial conditions; 
(A 5) can then be simplified by a change of variables, s, - = s+s': 

m m 

( j 2 )  = c (1 -a>ls-1 (f(S-)f(O)) c (1 -a)2s+ 
s-=--tO s+=o 

1 m 

In the special case that the random force is delta-function correlated in time (as in 
(4.14)), then 
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In the more general case (i.e. in (4.8)) the random force has a finite but short relaxation 
time T ~ .  Here a simple result can only be obtained for sufficiently small values of u that 
( l - U P %  1: 

(A 8) 
1 ”  

(.P) = - c (f(~>f(O)>; 2u t=-m 

this result applies to (4.8) in the limit k+O. 
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